

Lessons Learned: An Update on Candida auris Epidemiology

January 16, 2019

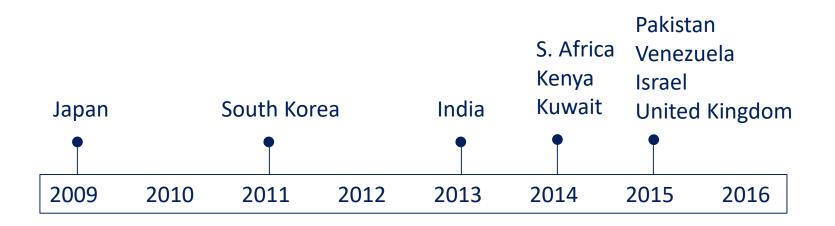
Eleanor Adams, MD, MPH Healthcare Epidemiology & Infection Control Program New York State Department of Health

Objectives

- Global & U.S. Candida auris epidemiology
- *C. auris* epidemiology in New York State
 - Patient characteristics
 - Environmental findings
 - Laboratory findings
 - Lessons Learned

Global *C. auris* Emergence: First Report of *C. auris,* Japan, 2009

Candida auris sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital


Kazuo Satoh^{1,2}, Koichi Makimura^{1,3}, Yayoi Hasumi¹, Yayoi Nishiyama¹, Katsuhisa Uchida¹ and Hideyo Yamaguchi¹

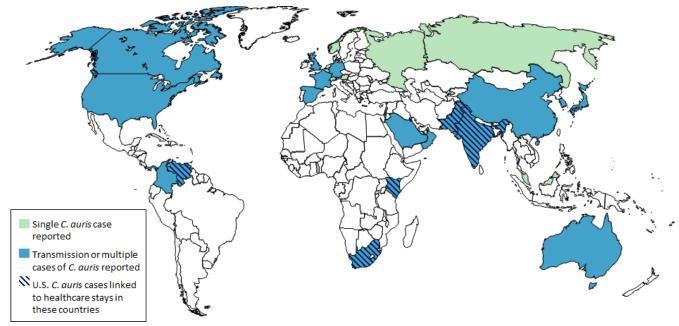
¹Teikyo University Institute of Medical Mycology, 359 Otsuka, Hachioji, Tokyo 192-0395, ²Japan Health Sciences Foundation, 13-4 Nihonbashi-Kodenmacho, Chuo-ku, Tokyo 103-0001 and ³Genome Research Center, Graduate School of Medicine and Faculty of Medicine, Teikyo University, Otsuka 359, Hachioji, Tokyo 192-0395, Japan

Satoh K, Makimura K, Hasumi Y, et al. *Candida auris* sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiol Immunol. 2009;53:41–4.

Global *C. auris* Emergence: Rapid Emergence Since 2009

January 16, 2019

Global C. auris Emergence


Clinical Infectious Diseases		Discussion Security of Contract of Contrac		
lssues More Content ▼	Publish 🔻 Purchas	e Advertise ▼ About ▼	All Clinical Infectiou 🔻	Q Advanced Search
Clinical Infectious Diseases Volume 64, Issue 2 15 January 2017 Article Contents	Sim 3 Co Epic Shawn Nelesh Shown Clinica https:/	ontinents Confirmed b demiological Analyses R. Lockhart, Kizee A. Etienne, Snigdl P. Govender, Arnaldo Lopes Colomb more	ha Vallabhaneni, Joveria Farooqi, Anuradha Cl oo, Belinda Calvo, Christina A. Cuomo, Christoq e 2, 15 January 2017, Pages 134–140,	ing and

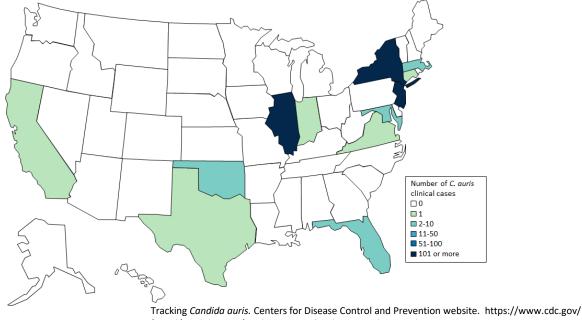
https://academic.oup.com/cid/article/64/2/134/2706620

Global C. auris Emergence

Countries from which Candida auris cases have been reported, as of November 30, 2018

Tracking *Candida auris*. Centers for Disease Control and Prevention website. https://www.cdc.gov/fungal/candida-auris/tracking-c-auris.html. Accessed September 20, 2018.

6

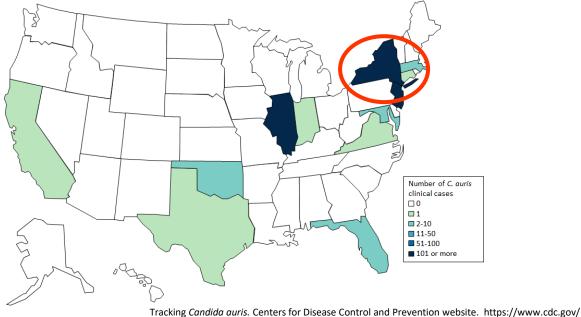

NEW YORK STATE OF OPPORTUNITY.

Department

of Health

C. auris in U.S.

U.S. Clinical Cases of Candida auris Reported by State, United States, as of November 30, 2018



fungal/candida-auris/tracking-c-auris.html. Accessed September 20, 2018.

C. auris in U.S.

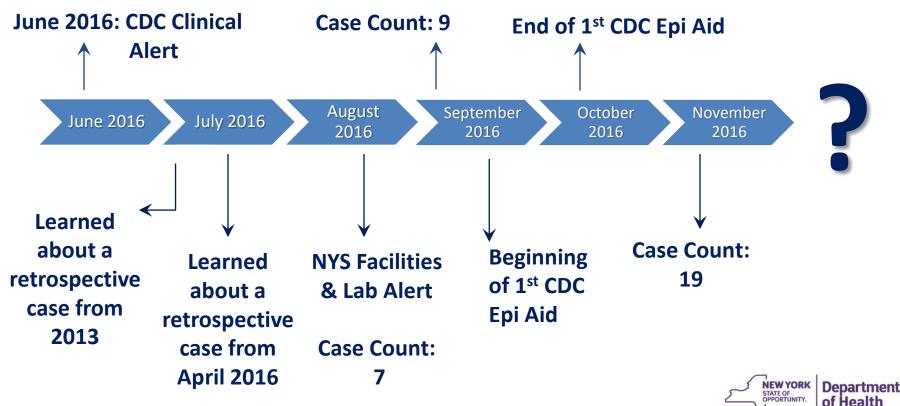
U.S. Clinical Cases of Candida auris Reported by State, United States, as of September 30, 2018

fungal/candida-auris/tracking-c-auris.html. Accessed September 20, 2018.

New York State Numbers

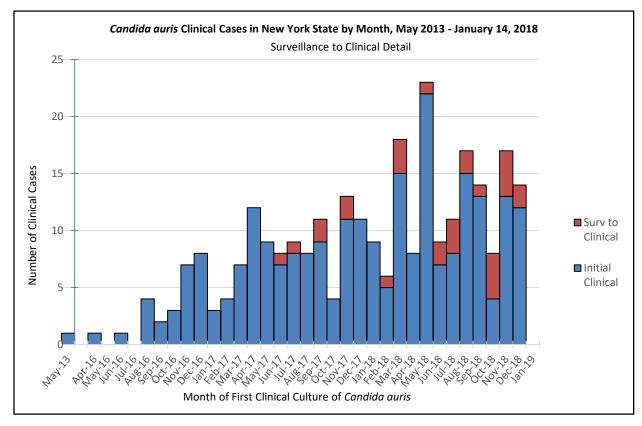
- As of January 14, 2019
 - Confirmed cases:
 - Clinical cases: 280
 - Surveillance cases: 391
 - Probable cases: 4

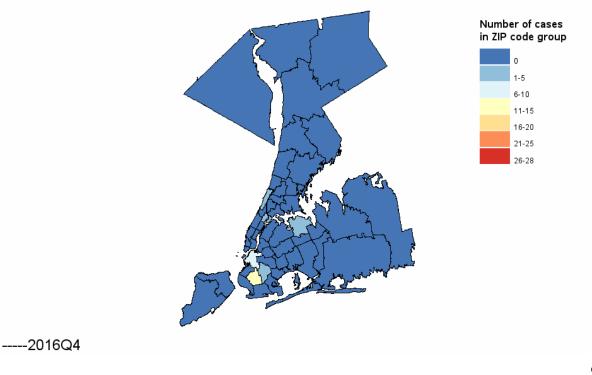
Double-counted: 29 (surveillance \rightarrow clinical)



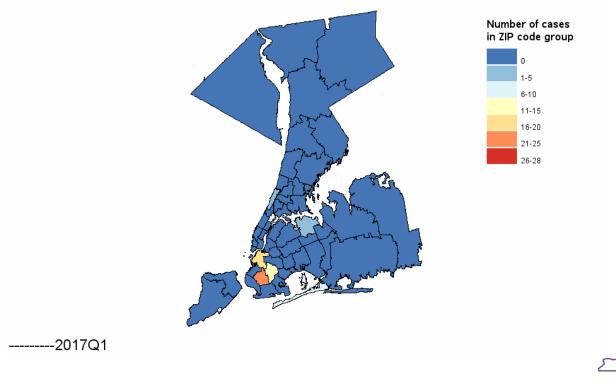
Lessons Learned

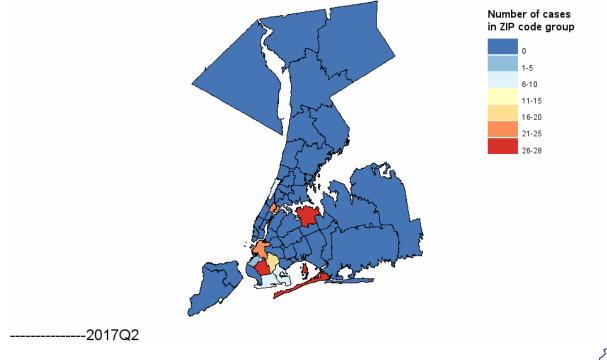
January 16, 2019

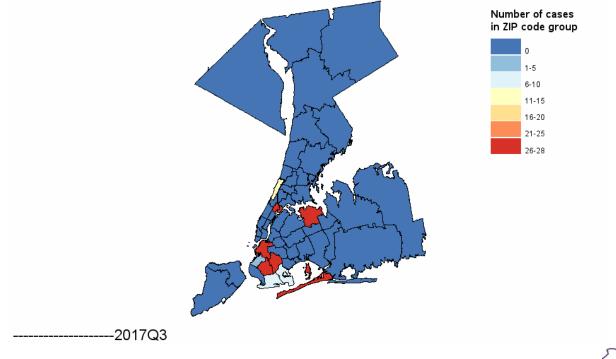

Lessons Learned C. auris in New York

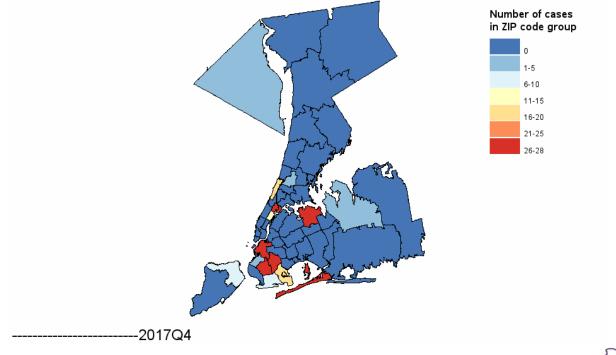


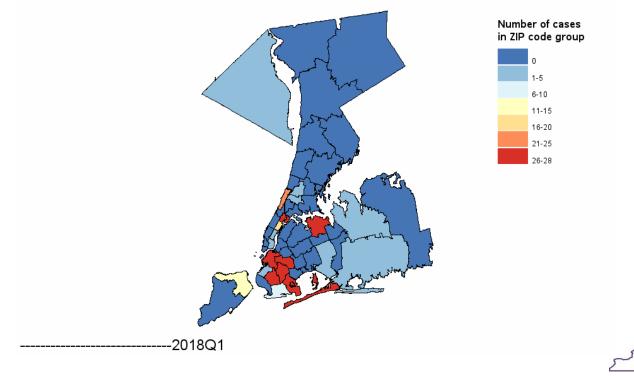
Lessons Learned C. auris in New York

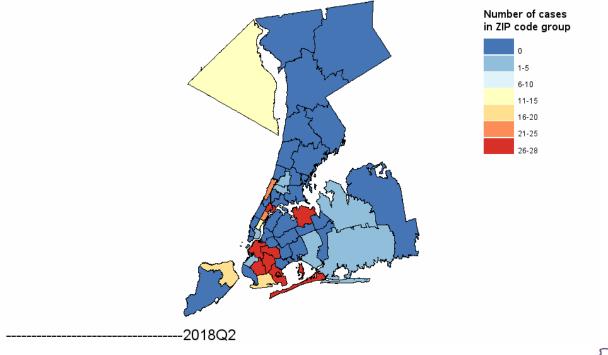

Spread in Healthcare Facilities



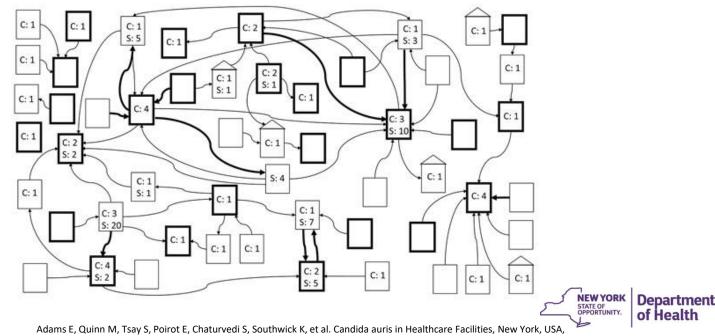








- Data from first 51
 clinical cases in NYS
 - 31 (61%) in Long Term Care Facility (LTCF) immediately before hospital admission
 - 19 of 31
 (61%) in
 LTCFs with
 ventilator beds


Data from first 212 Clinical Cases

Healthcare Exposure Prior to Current Admission, Prior 90 Days	Number of Cases (n)	Percentage (%)
Acute Care Hospital	185	79%
Long Term Care Facility (Nursing Home)	74	31%
None	32	15%
Community	14	6%
Long Term Acute Care Hospital	6	3%
Other	3	1%

Epidemiological Links Between Healthcare Facilities Affected by

C. auris, New York State, 2013-2017

2013–2017. Emerg Infect Dis. 2018;24(10):1816-1824. https://dx.doi.org/10.3201/eid2410.180649

Facilities Through Which a Patient with *C. auris* Has Passed, 90 Days Prior to Diagnosis as of January 14, 2019

Facility Type	# Facilities
Hospitals	57
Nursing Homes	96
LTACH	1
Hospice	2
Total	156

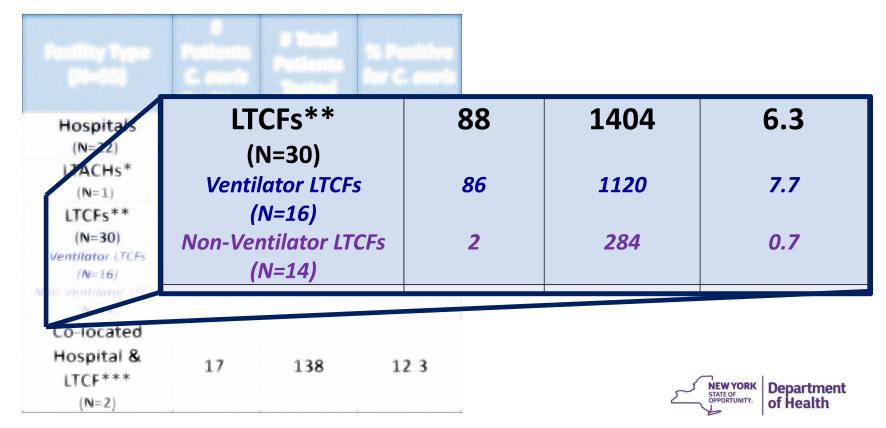
Intense NYS Efforts

- Incident Management System activation
- Case finding
- Hired additional staff
- Roundtable with healthcare leadership
- Webinar for NYC hospitals and nursing homes

- Required infection control self-assessment survey for all NYC hospitals and nursing homes
- On-site reviews of all hospitals and nursing homes in Brooklyn and Queens to assess compliance with infection control requirements
- Point prevalence studies, environmental surveys & educational infection control assessments

Point Prevalence Surveys (PPS) in New York State

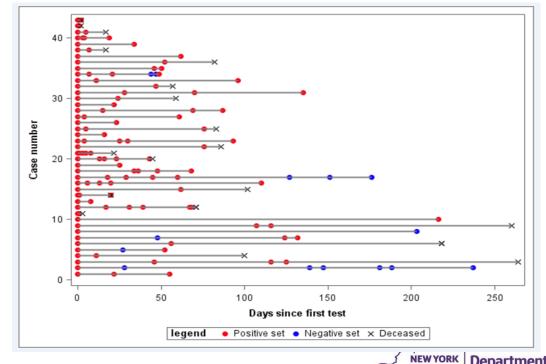
- As of March 25, 2018, 81 point prevalence surveys & environmental surveys had been conducted at 55 healthcare facilities
 - PPS:


4268 samples were collected from 2344 individuals

- 144 (6.1%) individuals had a positive *C. auris* culture
- 125 (5.3%) individuals had a positive *C. auris* PCR test

Facility Type (N=55)	# Patients <i>C. auris</i> Positive	# Total Patients Tested	% Positive for <i>C. auris</i>
Hospitals (N=22)	36	767	5.0
LTACHs* (N=1)	1	35	2.9
LTCFs**	88	1404	6.3
(N=30) Ventilator LTCFs (N=16)	86	1120	7.7
Non-Ventilator LTCFs (N=14)	2	284	0.7
Co-located Hospital & LTCF*** (N=2)	17	138	12.3

Lessons Learned C. auris in New York


Persistent Colonization

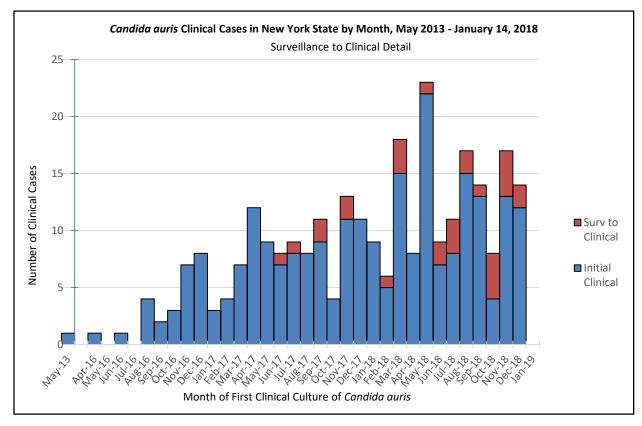
Lessons Learned Persistent Colonization

Follow-up Cultures for Clinical C. auris Cases, by Case

- Data from first 43 • clinical patients in NYS
 - 2 deemed to be "cleared"
 - 19/43 (44%) expired

Adaptation of Table from: Adams E, Quinn M, Tsay S, et al. Candida auris in Healthcare Facilities, New York, a USA, 2013 –2017. Emerg Infect Dis. 2018;24(10):1816-1824. https://dx.doi.org/10.3201/eid2410.180649

Department


of Health

STATE OF OPPORTUNITY.

Lessons Learned C. auris in New York

Colonized Patients are Becoming Infected

Lessons Learned C. auris in New York

Persistence in the Environment

Lessons Learned Persistence in the Environment

Environmental Surveys (ES) in New York State

- As of March 2018, 81 point prevalence surveys & environmental surveys had been conducted at 55 healthcare facilities
 - ES:

2896 environmental samples collected

- 86 (3.0%) samples positive for *C. auris* by culture
- 257 (8.9%) samples positive by PCR
- Many were from surfaces or equipment deemed to be "clean"

Lessons Learned Persistence in the Environment

- *C. auris* recovered from multiple sites within patient & procedure rooms:
 - Call bells
 - TV remotes, telephones
 - Window sills
 - Curtains
 - Light cords
 - Ventilators
 - Blood pressure cuffs

- PPE carts
- Medication carts
- Clean supply carts
- Housekeeping carts
- IR suite equipment
- OR equipment

Lessons Learned Persistence in the Environment

Journal of Clinical Microbiology

search	Q
	Advanced Search

Home Articles For Authors About t	ne Journal Subscribe
-----------------------------------	----------------------

Survival, Persistence, and Isolation of the Emerging Multidrug-Resistant Pathogenic Yeast *Candida auris* on a Plastic Healthcare Surface

Rory M. Welsh, Meghan L. Bentz, Alicia Shams, Hollis Houston, Amanda Lyons, Laura J. Rose, Anastasia P. Litvintseva

DOI: 10.1128/JCM.00921-17

Welsh R, Bentz M, Shams A, et al. Survival, Persistence, and Isolation of the Emerging Multidrug-Resistant Pathogenic Yeast *Candida auris* on a Plastic Healthcare Surface. J Clin Micro. 2017;55(10):2996-3005.

Department

of Healt

STATE OF OPPORTUNITY.

Lessons Learned C. auris in New York

Vulnerable Hosts

Lessons Learned Vulnerable Hosts

- Currently, 57% of clinical cases are males
- Clinical cases have multiple underlying conditions

Age Range (Years)	# Cases (%)	
<1	1 (0%)	
1-18	0 (0%)	
19-44	25 (9%)	
45-64	45-64 85 (30%)	
>64	169 (60%)	

Lessons Learned Vulnerable Hosts

- Clinical cases through August 20, 2018
 - Blood and urine majority of first positive sites
 - Variety of sites

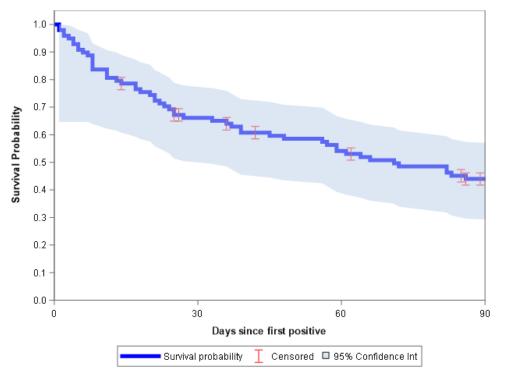
First Positive Site	Count	%
Blood	119	56
Urine	40	19
Wound/skin	18	8
Respiratory site	17	8
Other	9	4
Bile	4	2
Catheter tip or segment	3	1
Ear	2	1
Total	212	100

Departm

38

Lessons Learned Vulnerable Hosts

We ARE NOT seeing large numbers of patients with <i>C. auris</i> who:	We ARE seeing large numbers of patients with <i>C. auris</i> who:	
Are children	Are over the age of 65	
Are neutropenic	Have wounds, lines, or drains	
Are in the community	Are on ventilators	
Do not have co-morbid medical conditions	Are nursing home residents with frequent hospitalizations	


Lessons Learned C. auris in New York

High Mortality

Lessons Learned High Mortality

Probability of Survival, All Cases Combined

Probability of surviving past:

2 days = 96% 7 days = 89% 30 days = 66% 60 days = 54% 90 days = 44%

Lessons Learned C. auris in New York

Antifungal Drug Resistance

Lessons Learned Antifungal Drug Resistance

- Lockhart 2016: 54 isolates from Pakistan, India, South Africa, Venezuela, and Japan
 - Susceptibility testing
 - 93% resistant to fluconazole, 54% to voriconazole, 35% to amphotericin B, 7% to echinocandins, 6% to flucytosine
 - 41% resistant to ≥2 classes, 2 isolates resistant to 3 classes

Lockhart SR, Etienne KA, Vallabhaneni, S. Simultaneous Emergence of Multidrug-Resistant Candida auris on 3 Continents Confirmed by Whole-Genome Sequencing and Epidemiological Analyses. Clin Infect Dis. 2017 Jan 15;64(2):134-140.

Lessons Learned: Antifungal Drug Resistance

Antifungal susceptibility data for first *Candida auris* isolates from 51 clinical cases, New York, USA, 2013–2017

Antifungal	Tentative resistance breakpoint	MIC ₅₀	MIC range	No. (%) resistant
Fluconazole	>32	>256	8.00 to >256	<mark>50 (98)</mark>
Caspofungin	>2	0.060	0.03–0.25	0
Micafungin	>4	0.120	0.06–0.25	0
Anidulafungin	>4	0.250	0.12-0.50	0
Amphotericin B	>2	1.500	0.50–4.00	<mark>15 (29)</mark>
Flucytosine	NA	0.125	0.125–0.25	NA

Adams E, Quinn M, Tsay S, et al. Candida auris in Healthcare Facilities, New York, USA, 2013 – 2017. Emerg Infect Dis. 2018;24(10):1816-1824. https://dx.doi.org/10.3201/eid2410.180649

Infection Prevention and Control Measures are Challenging... But They Work!

What Are The Recommendations?

Infection Control & Prevention	Environmental Cleaning
Hand Hygiene Private Patient Rooms	Use EPA-Registered Hospital Grade Disinfectant Effective Against <i>C.</i> <i>difficile</i> spores ("List K")
Isolation/Cohorting - Contact Precautions - Dedicated equipment - Attention to transporting	 Attention to contact times Attention to high touch surfaces & moveable equipment
Reporting & Interfacility Communication	
Screening of Contacts & CDC Recommended Groups	
Lab Identification	

Health Advisory: Update to Healthcare Facilities Regarding Multidrug-Resistant Yeast *Candida auris* in New York State. 2017 CDC *C. auris*: https://www.cdc.gov/fungal/diseases/candidasis/candida-auris.html

NEW YORK STATE OF OPPORTUNITY.

Department of Health

Importance of Interfacility Communication

- We have been tracking admissions, discharges, and transfers
- Numbers are growing too large for tracking to be feasible
- This means that interfacility communication will become even more important!
- Infection preventionists need to be involved in discharges and transfers
- Pay special attention to after-hours/weekend discharge and transfer procedures
- Inadequate communication might result in regulatory action

Long-Term Care Facilities

- Infection control and home environment
 - "Modified" Contact Precautions*
 - Allow resident to leave room
 - Discuss with NYSDOH
- Need for alcohol-based hand rub in locations that allow for use upon room entrance and exit

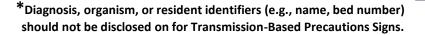
* NYSDOH Resource: Transmission Based Precautions in Long Term Care Facilities Memo Available at: https://www.health.ny.gov/diseases/communicable/c_auris/providers/

Transmission-Based Precautions Signage

Facility

Nursing homes & Hospitals:

- "We can't have the diagnosis on the door...we can get cited."
- Default signage: "See Nurse"


Pertinent Factors/ Data:

- CMS (42 C.F.R. section 483.10),
 signage restrictions do not apply to
 "the CDC isolation precaution
 transmission based signage for
 reasons of public health protection, as
 long as the sign does not reveal the
 type of infection" (CMS State
 Operations Manual, Appendix PP)*.
- Bottom line: Signs can be more informative

NEW YORK

STATE OF OPPORTUNITY. Department

of Health

NYSDOH Resource

Table 1: Pros and Cons of Various Types of Transmission-based Precautions Signs*

Description	Pros	Cons	Comments
Signs stating the type of	Easily recognizable and meaningful	Not meaningful for visitors – might need	
precautions (e.g. "Contact	for healthcare providers	additional language such as "Visitors: see	
Precautions")		nurse"	
Signs stating the type of	Likely recognizable and meaningful	Not meaningful for visitors – might need	
precautions but without the	for healthcare providers; might be	additional language such as "Visitors: see	
word "precautions" (e.g.	less alarming to visitors than signs	nurse"	
"Contact", "Droplet")	with the word "precautions"		
Signs stating the type of	Easily recognizable and meaningful	Might be confusing or alarming for visitors and	
precautions (e.g. "Contact	for healthcare providers; remind	might need additional language such as	
Precautions") and providing	healthcare providers what needs to	"Visitors: see nurse"; might result in a large,	
detailed information about what	be done while caring for the resident	obtrusive, and/or cluttered sign	
those precautions entail (e.g.			
pictures of PPE to be worn)			
Signs with language such as	Useful for visitors; may be less	Might not be understood to indicate	NYSDOH staff have witnessed
"See nurse before entering"	alarming than signs that are more	Transmission-Based Precautions by healthcare	healthcare providers entering
	explicit about precautions	providers	rooms with these types of signs
Signs consisting of colored dots	Unobtrusive	Not meaningful for visitors – might need	without using PPE because the
to indicate which type of		additional language such as "Visitors: see	signs were not recognized as
precautions are required		nurse"; might not be understood to indicate	indicating Transmission-Based
		Transmission-Based Precautions by healthcare	Precautions. If these types of
		providers; not useful for healthcare providers	signs are chosen, the facility
		who are color-blind	should ensure that all
Signs consisting of symbols to	Unobtrusive and relatively easy for	Not meaningful for visitors – might need	healthcare providers and other
indicate precaution types (e.g. a	healthcare providers to remember	additional language such as "Visitors: see	staff receive effective, periodic
water drop to indicate Droplet		nurse"; might not be understood to indicate	training on the meaning of the
Precautions)		Transmission-based Precautions by healthcare	signs. Regardless of sign type,
		providers	adherence should be monitored.

* Legal questions regarding signage content and ensuring such signage complies with CMS and HIPAA requirements should be directed to facility counsel.

<u>NYSDOH Resource</u>: Transmission Based Precautions in Long Term Care Facilities Memo Available at: https://www.health.ny.gov/diseases/communicable/c_auris/providers/

Pros and Cons of various types signage

- See the nurse
- "Contact
 - precautions"
- Each precaution
- Verbal description PPE
- Pictures of PPE

Where do we go from here?

• Targeted admission screening

- Currently ongoing in at least 3 facilities
- May need to be expanded as laboratory capacity for rapid testing grows
- Goal: prevent *C. auris* endemicity and transmission within high acuity units such as vent units and ICUs
- Focus on preventing spread beyond NYC Metropolitan area

Lessons Learned: Summary

- C. auris:
 - Emerged independently multiple times
 - Spread rapidly among healthcare facilities in NYC area
 - Individuals can be colonized for many months
 - Colonized individuals can develop infections
 - It is affecting individuals who are vulnerable hosts
 - High mortality rate among infected individuals
 - Can persist in the healthcare environment
 - Potential for antifungal drug resistance

Lessons Learned: Summary

- C. auris:
 - We have learned how *C. auris* is transmitted
 - Extensive infection control efforts in NYS to identify cases and optimize infection control interventions do work
 - Local health department staff, hospital and nursing home staff, and federal agency staff are wonderful partners willing to assist with NYS efforts
 - The more we know, the better!

Acknowledgements

Hospital, LTACH, & Nursing Home Infection Preventionists, Nurses, Environmental Services Staff, Laboratorians, Administrators

- NYSDOH
 - Belinda Ostrowsky
 - Debra Blog
 - Monica Quinn
 - Emily Lutterloh
 - Karen Southwick
 - Jane Greenko
 - Rafael Fernandez
 - Sudha Chaturvedi
 - Richard Erazo
 - Ronald Jean Denis
 - Sarah Kogut

- NYSDOH
 - Rutvik Patel
 - Elizabeth Dufort
 - Barbara Bright-Motelson
 - Robert McDonald
 - Nina Ahmad
 - Karyn Langguth
 - Valeria Haley
 - Sudha Chaturvedi
 - YanChun Zhu
 - Wenxuan Yang
 - Erin Gustufson

CDC

.

- Karlyn Beer
- Tom Chiller
- Nancy Chow
- Janet Glowicz
- Brendan Jackson
- Alex Kallen
- Ana Litvintseva
- Shawn Lockhart
- Abimbola Ogundimu
- Eugenie Poirot
- Sharon Tsay
- Snigdha Vallabhaneni
- Rory Welsh
- NYCDOHMH

References

- 1. Adams, E, Quinn M, Tsay S, et al. *Candida auris* in Healthcare Facilities, New York, USA 2103-2017. Emerg Infect Dis. 2018;24(10):1816-1824.
- 2. Borman AM, Szekely A, Johnson EM. Comparative pathogenicity of United Kingdom isolates of the emerging pathogen *Candida auris* and other key pathogenic *Candida* species. mSphere. 2016;1:e00189–16.
- 3. Calvo B, Melo ASA, Perozo-Mena A, et al. First report of *Candida auris* in America: clinical and microbiological aspects of 18 episodes of candidemia. J Infect. 2016;73:369–74.
- 4. Chakrabarti A, Sood P, Rudramurthy SM, et al. Incidence, characteristics and outcome of ICU-acquired candidemia in India. Intensive Care Med. 2015;41:285–95.
- 5. Chowdhary A, Kumar VA, Sharma C, et al. Multidrug-resistant endemic clonal strain of Candida auris in India. Eur J Clin Microbiol Infect Dis. 2014;33:919–26.
- 6. Chowdhary A, Sharma C, Duggal S, et al. New clonal strain of Candida auris, Delhi, India. Emerg Infect Dis. 2013;19:1670–3.
- 7. Chowdhary A, Voss A, Meis JF. Multidrug-resistant Candida auris: 'new kid on the block' in hospital-associated infections? J Hosp Infect. 2016;94:209–12.
- 8. Emara M, Ahmad S, Khan Z, et al. Candida auris candidemia in Kuwait, 2014. Emerg Infect Dis. 2015;21:1091–2.
- 9. Lee WG, Shin JH, Uh Y, et al. First three reported cases of nosocomial fungemia caused by *Candida auris*. J Clin Microbiol. 2011;49:3139–42.
- 10. Lockhart SR, Etienne KA, Vallabhaneni S, et al. Simultaneous emergence of multidrug resistant *Candida auris* on three continents confirmed by whole genome sequencing and epidemiological analyses. Clin Infect Dis. Advance access, published October 20, 2016, accessed December 15, 2016.
- 11. Magobo RE, Corcoran C, Seetharam S, et al. *Candida auris*-associated candidemia, South Africa. Emerg Infect Dis. 2014;20:1250–1.
- 12. Oh BJ, Shin JH, Kim M-N, et al. Biofilm formation and genotyping of *Candida haemulonii*, *Candida pseudohaemulonii*, and a proposed new species (*Candida auris*) isolates from Korea. Med Mycol. 2011;49:98–102.
- 13. Okinda N, Kagotho E, Castanheira M, et al. Candidemia at a referral hospital in sub-Saharan Africa: emergence of *Candida auris* as a major pathogen. European Congress of Clinical Microbiology and Infectious Diseases. Barcelona, 2014. Poster presentation.
- 14. Sarma S, Kumar N, Sharma S, et al. Candidemia caused by amphotericin B and fluconazole resistant *Candida auris*. Indian J Microbiol. 2013;31:90–1.
- 15. Satoh K, Makimura K, Hasumi Y, et al. *Candida auris* sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiol Immunol. 2009;53:41–4.
- 16. Schelenz S, Hagan F, Rhodes JL, et al. First hospital outbreak of the globally emerging *Candida auris* in a European hospital. Antimicrob Resist Infect Control. 2016;5:eCollection.
- 17. Southwick K, Adams E, Greenko J, et al. New York State 2016-2018: Progression from *Candida auris* Colonization to Bloodstream Infection. Poster session presented at:IDWeek, 2018 Oct 3-6; San Francisco, CA.
- 18. Toussaint, K. Health experts detail 'concerning' outbreak of Candida auris fungus in NYC. *Metro New York City.* September 21-23.
- 19. Tsay S, Welch R, Adams E, et al. Notes from the Field: Ongoing Transmission of *Candida auris* in Health Care Facilities United States, June 2016-2017. MMWR. 2017;66(19):514-515.
- 20. Welsh R, Bentz M, Shams A, et al. Survival, Persistence, and Isolation of the Emerging Multidrug-Resistant Pathogenic Yeast *Candida auris* on a Plastic Healthcare Surface. J Clin Micro. 2017;55(10):2996-3005.

